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Influence of group-delay ripple on timing jitter induced by
SPM and IXPM in systems with dispersion

compensated by CFBG
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An analytical expression was proposed to analyze the influence of group-delay ripple (GDR) on timing jitter
induced by self-phase modulation (SPM) and intra-channel cross-phase modulation (IXPM) in pseudo-
linear transmission systems when dispersion was compensated by chirped fiber Bragg grating (CFBG).
Effects of ripple amplitude, period, and phase on timing jitter were discussed by theoretical and numerical
analysis in detail. The results show that the influence of GDR on timing jitter changes linearly with
the amplitude of GDR and whether it decreases or increases the timing jitter relies on the ripple period
and ripple phase. Timing jitter induced by SPM and IXPM could be suppressed totally by adjusting the
relative phase between the center frequency of the pulse and the ripples.
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Pseudo-linear transmission is a regime for transmission
of high-speed time division multiplexing (TDM) signals
where fast variations of each channel waveform with
cumulative dispersion allow important averaging of the
intra-channel effects of fiber nonlinearity[1]. The main
nonlinearities in this kind of systems are self-phase mod-
ulation (SPM), intra-channel cross-phase modulation
(IXPM) and intra-channel four wave mixing (IFWM).
IXPM together with SPM cause timing jitter between
pulses, which is considered as one of the major limit-
ing factors for systems with transmission speed reaching
40 Gb/s or beyond. This makes timing jitter become a
hot area of research[2,3]. Theoretical analyses have shown
that timing jitter induced by SPM and IXPM in this kind
of transmission system results from a two-step process:
Firstly, SPM and IXPM induce frequency shift between
adjacent pulses. Then, the frequency shift is transformed
to timing shift between pulses through dispersion and
this finally results in timing jitter[4,5].

In this kind of transmission system, chirped fiber
Bragg grating (CFBG) is a good alternative as disper-
sion compensator[6−8]. It has some advantages relative
to other dispersion compensation methods such as low
insertion loss, small package size, and reduced nonlinear
effects. It is likely that the group-delay ripple (GDR)
of CFBG could bring about some effects on timing jit-
ter since it changes the lumped dispersion of the grating.
However, to our knowledge, no qualitative or quantita-
tive analysis of this problem, has been published so far.
In this letter, an analytical method is proposed to an-
alyze the influence of GDR on timing jitter induced by
SPM and IXPM in pseudo-linear transmission systems
using CFBG as dispersion compensator.

The transmission function of the fiber grating is mod-
eled as[9]
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where g is the average lumped dispersion of the grating.
Parameters Γ, 2π/T0, and θ are the amplitude, period,
and phase of the dispersion ripple, respectively. Using
the Jacobi-Anger expansion,
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where Jn(z) is the Bessel function of the first kind. Leav-
ing out the terms containing high-order Bessel function,
we get
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Substituting Eq. (3) into Eq. (1), then

H (ω) = exp(j
g

2
ω2) exp(j

Γ
T 2

0

)

×
{

J0(− Γ
T 2

0

) + jJ1(− Γ
T 2

0

) exp(jωT0 + jθ)

−jJ−1(− Γ
T 2

0

) exp(−jωT0 − jθ)
}

. (4)

For the sake of analyzing convenience, we set exp(j g
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be expressed as

H (ω) = H1(ω) exp(j
Γ
T 2

0

)H2(ω). (5)

Supposing that the electrical field of the signal input
into CFBG is u(L, t) and the average lumped dispersion
of CFBG can compensate the accumulated dispersion ex-
actly. L represents the position of CFBG. Then, the out-
put signal after the grating is

ũFBG(L, t) = ũ(L, t)H(ω)

= exp(j
Γ
T 2

0

)ũ(L, t)H1(ω)H2(ω), (6)

where superscript ‘∼’ represents Fourier transform,
ũFBG(L, t) is the signal output from the grating.

The part of ũ(L, t)H1(ω) denotes dispersion compensa-
tion of distorted pulses with ideal grating without GDR.
We set its Fourier inverse transform as uD(L, t). When
ũ(L, t)H1(ω) multiplies with H2 (ω) in frequency area,
the three parts of H2 (ω) make uD(L, t) be timing shifted
by 0, −T0 and T0 with different amplitude, respectively.
Then we get the time area expression of the output signal
after compensating grating,
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If the input signal is Gaussian-shaped pulses with peak
power of A2

0 and 3-dB width of τ , the timing jitter af-
ter compensating grating can be obtained directly from
Eq. (7) by using
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(√

πA2
0τ

)−1
∫ ∞

−∞
t |u|2 dt. (8)

To discuss the influence of GDR on timing jitter, we
deduce the analytical expression of |uFBG|2 and get

|uFBG(L, t)|2 ≈ |uD(L, t)|2 + |uΔ|2 , (9)

where

|uΔ|2 = ΓRe
{ 1

T 2
0

[uD(L, t)u∗
D(L, t − T0) exp(j

π

2
− jθ)

+uD(L, t)u∗
D(L, t + T0) exp(j

π

2
+ jθ)]

}
, (10)

the superscript ‘∗’ denotes complex conjugating. During
the above procedure, we leave out the terms containing
the product of two first-order Bessel functions for their
far less contribution to |uΔ|2, compared with other terms.
Numerical simulation shows that this approximation is
reasonable. In fact, by assuming a sine distribution of
GDR as

τGDR(f) = τp sin(
2πf

fp
+ θ), (11)

where τGDR stands for GDR, fp and τp are the period
and amplitude of GDR, respectively.

Then Eq. (10) could be rewritten as
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Substituting Eq. (9) into Eq. (8), we get the total tim-
ing jitter
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So the timing jitter influenced by the GDR of compen-
sating grating is

δTΔ =
(√

πA2
0τ

)−1
∫ ∞

−∞
t |uΔ|2 dt. (14)

Since uD(L, t) can be described as the sum of the in-
jected signal and a nonlinear interference signal given by∑

i,j,k Δui,j,k(L, t)[2], where Δui,j,k(L, t) stands for the
perturbation caused by the nonlinearity and its detail ex-
pression could be found in Ref. [2]. Timing jitter caused
by SPM and IXPM when dispersion is compensated by
CFBG with GDR could be calculated by Eqs. (11) and
(13) when keeping only the SPM and IXPM terms of
Δui,j,k(L, t).

It can be concluded from Eqs. (10), (12)—(14) that the
influence of GDR is not only relative to its amplitude,
period and phase but also as function of the electrical
field of signal and its delay when compensating with
ideal CFBG. When GDR is taken into account, timing
jitter induced by SPM and IXPM can be distinguished
as two independent parts, one for ideal CFBG and the
other for GDR. This makes it easy to distinguish the
influence of GDR on timing jitter by wiping off the tim-
ing jitter of system with ideal CFBG compensator from
that of system when taking GDR into account, and this
is very useful in numerical simulation.

The following conclusions could be gotten through an-
alyzing Eqs. (12) and (14).

Firstly, for fixed period and phase, the timing jitter
induced by the GDR of compensating grating changes
linearly with the amplitude of GDR, which means that
compensating grating with larger delay ripple amplitude
influences more acutely than that with smaller ripple
amplitude. But it relies on the value of fp and θ that
whether this influence is depressing or increasing the
total timing jitter.

Secondly, by setting the differential coefficient of δTΔ

with θ, we find that the optimal θ minimizing δTΔ and
results of minimized δT are as functions of fp. Besides,
there may exist special θ to make δTΔ to be minus which
results in decreasing of timing jitter and does well in
transmission. To restrain timing jitter, there must be
GDR with proper θ and proper range of fp. This is
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because that the GDR changes the average lumped dis-
persion of the grating and different GDR parameters
correspond to different dispersion value of the grat-
ing. When frequency shift between pulses induced by
SPM and IXPM is finally converted into timing jitter
by dispersion, different value of dispersion will result in
different timing jitter.

Thirdly, since there is an integral in Eq. (14) and the
integral function includes multiplication of uD(L, t) with
its delay, if uD(L, t) is finite in time and 1/fp is larger
than its duration, the integral function will be zero and
GDR will do nothing with timing jitter. This means that
if the input signal is Gaussian-shaped pulses with pulses
amount of n and bit duration of Tb, when fp is smaller
than or equals 1/(nTb), GDR will not affect the timing
jitter and δTΔ will turn to zero. And when fp → ∞,
|uΔ|2 becomes zero in Eq. (12), this also makes δTΔ be
zero. These mean that when fp is too small or too large
the GDR will do nothing with timing jitter. This result
is in agreement with the conclusion of Ref. [9].

Now we use numerical simulation of nonlinear
Schrödinger equation with split-step Fourier method
(SSFM) to validate these conclusions and take a deep
insight of the influence of GDR on timing jitter induced
by intrachannel interactions in systems using CFBG as
dispersion compensator.

Two return-to-zero (RZ) modulated Gaussian pulses
with 3-dB bandwidth of 5 ps and peak power of 20 mW
are inputted into a transmission line of 65-km single
mode fiber. And then the dispersed pulses are compen-
sated with a CFBG, whose average lumped dispersion
can compensate the accumulated fiber dispersion exactly.
The transmission bite rate is 40 Gb/s corresponding to
time slot Tb = 25 ps. The nonlinear coefficient and
dispersion coefficient of the transmission fiber are 2
W−1·km−1 and −20 ps2·km−1, respectively. Fiber loss is
not taken into account in our simulation, and the timing
jitter is characterized by detecting the difference between
the peak time positions of the two pulses. The timing
jitter induced by GDR is calculated by wiping off the
timing jitter of system with ideal CFBG compensator
from the total timing jitter of system when taking GDR
into account. Although the input signal is set to be two
Gaussian-shaped pulses to simplify calculation, it does
not influence the universality of the conclusions.

Figure 1 shows the graph of δTΔ versus ripple ampli-
tude. It indicates that the timing jitter increases linearly
as ripple amplitude increases.

Fig. 1. Timing jitter induced by GDR as a function of ripple
amplitude. Squares are results of numerical simulation, solid
line is the numerical fitting. Phase = 0, period = 0.32 nm.

From Fig. 2 we can see that when period of GDR is
smaller than 0.16 nm the total timing jitter of the sys-
tem keeps constant to be equal to 6.71× 10−13, which is
the timing jitter when GDR is not taken into account.
Since n = 2 in the simulation, this is consistent with the
analytical result that when fp is smaller than or equal
to 1/(nTb) the GDR will not affect the timing jitter.
And when period of GDR is larger than 32 μm which
can be considered to be infinite in our simulation, the
timing jitter is also 6.71 × 10−13. Since the input pulse
serial can be uninterrupted for real transmission systems
and the ripple period of real used CFBG for 40-Gb/s
transmission system could not be so large to reach the
magnitude of micrometer, GDR will inevitably influence
timing jitter induced by SPM and IXPM. Simulations
also show that when ripple period is between 0.16 nm
and 32 μm, timing jitter will be affected by GDR. Here
we plot the curve for ripple period of 0.96 nm, which
equals 3/Tb, as an example for the real case. This curve
indicates that the total timing jitter is a function of GDR
phase and GDR will enhance timing jitter for some ripple
phase while decrease it for some others.

Since the relative phase between the center frequency
of the pulse and the ripples is an important factor for de-
termining the average lumped dispersion of the grating[9],
we study the influence here. The ripple phase is changed
and the center frequency of the pulse is fixed at 193.1
THz. Figure 3 is the graph of optimal GDR phase and its
corresponding total timing jitter as a function of ripple
period. The figure shows that the optimal phase to min-
imize the timing jitter is different for different value of
ripple period. And their corresponding timing jitter pos-
sesses an average order of magnitude of lower than 10−14,

Fig. 2. Total timing jitter as a function of GDR phase, am-
plitude = 10 ps.

Fig. 3. Optimal phase and its corresponding total timing jit-
ter as a function of GDR period, amplitude = 10 ps.
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which is at least one order smaller than that of timing jit-
ter when using ideal CFBG with no GDR, for the timing
jitter is 6.71 × 10−13 with the above simulation param-
eters when GDR is not taken into account. This means
that GDR does not always hurt signal transmission and
restrict transmission distance, it maybe does good to
transmission by weakening timing jitter for some proper
ripple parameters. Then, we vary the carrier frequency
of the pulse around 193.1 THz and study the total timing
jitter as a function of the relative phase between the cen-
ter frequency of the pulse and the ripples, with constant
GDR phase. Actually, because IXPM induces different
values of frequency shift to different pulses, the cen-
ter frequencies of the two pulses inputted to the CFBG
will not be the carrier frequency and are different to each
other. But the frequency shift is negligible in comparison
with the carrier frequency[3], so the center frequency of
the pulse is approximated by the carrier frequency. The
results are shown in Fig. 4. Both Figs. 3 and 4 show that
there are points where the total timing jitter is zero, for
different ripple phases and ripple periods. This means
that by changing the carrier frequency of the pulse or
the GDR phase, one can get proper relative phase be-
tween the center frequency of the pulse and the ripples.
And this proper relative phase will result in totally can-
cellation of the timing jitter induced by intrachannel
interactions. Such a conclusion can be understood like
that the timing jitter after dispersion compensation is
direct proportional to the average lumped dispersion of
the CFBG[1], and the average lumped dispersion is as a
cosine function of the relative phase between the center
frequency of the pulse and the ripples[9]. Besides, it is
reasonable that by using a proper dispersion map the
timing jitter induced by intrachannel interactions can be
suppressed[3]. Since the adjusting of the center frequency
of the pulse or the change of the GDR phase will result
in a change of the relative phase, both of them could

Fig. 4. Total timing jitter as a function of relative phase be-
tween the center frequency of the pulse and the ripples. The
solid line represents zero total timing jitter. Amplitude = 20
ps.

change the average lumped dispersion of the CFBG, and
thus introduce under or over compensation of the dis-
persion map. When such a change in dispersion map
matches the condition of timing jitter cancellation, the
timing jitter will be suppressed totally. In practice, the
parameters of the GDR cannot be changed after fabrica-
tion. So, it is more effective to change the relative phase
by adjusting the carrier frequency. Actually, as can be
seen from Fig. 4, carefully adjusting the carrier frequency
is necessary because a slight change in the relative phase
can contribute to a significant decrease of timing jitter.
For example, if the ripple period, ripple phase and ripple
amplitude are 0.96 nm, 1.5π and 20 ps respectively, by
changing the carrier frequency from 193.17 THz (1553.0
nm) to 193.14 THz (1553.3 nm) the total timing jitter
can be suppressed from several hundred picoseconds to
zero.

The influence of GDR on timing jitter induced by SPM
and IXPM in pseudo-linear transmission systems with
dispersion compensated by CFBG is studied thoroughly
through theoretical and numerical analysis. It is con-
cluded that the influence of GDR on timing jitter changes
linearly with the amplitude of GDR and whether it de-
creases or increases the timing jitter relies on the ripple
period and ripple phase. Moreover, the timing jitter in-
duced by SPM and IXPM could be suppressed totally
by setting proper relative phase between the center fre-
quency of the pulse and the ripples. In practice, by ad-
justing the carrier frequency of the pulse, the timing jitter
can be reduced or cancelled out.
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3. J. Mårtensson, A. Berntson, M. Westlund, A. Daniells-
son, P. Johannisson, D. Anderson, and M. Lisak, Opt.
Lett. 26, 55 (2001).

4. T. Inoue, H. Sugahara, A. Maruta, and Y. Kodama,
IEEE Photon. Technol. Lett. 12, 299 (2000).

5. M. Matsumoto, IEEE Photon. Technol. Lett. 10, 373
(1998).

6. A. Sahara, T. Komukai, and E. Yamada, in Proceedings
of OFC 2001 ThF5-1 (2001).

7. Z. Tan, Y. Liu, Y. Chen, J. Cao, X. Dong, L. Ma, D.
Chang, T. Ning, and S. Jian, Chin. Opt. Lett. 3, 441
(2005).

8. Y. Chen, J. Cao, T. Chen, and S. Jian, Acta Opt. Sin.
(in Chinese) 26, 331 (2006).

9. Y. H. C. Kwan, P. K. A. Wai, and H. Y. Tam, Opt. Lett.
26, 959 (2001).


